Proof of the Flohr-Grabow-Koehn conjectures for characters of logarithmic conformal field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 4012243
(http://iopscience.iop.org/1751-8121/40/40/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.146
The article was downloaded on 03/06/2010 at 06:20

Please note that terms and conditions apply.

# Proof of the Flohr-Grabow-Koehn conjectures for characters of logarithmic conformal field theory* 

S Ole Warnaar<br>Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia<br>E-mail: warnaar@ms.unimelb.edu.au

Received 16 May 2007
Published 18 September 2007
Online at stacks.iop.org/JPhysA/40/12243


#### Abstract

In a recent paper, Flohr, Grabow and Koehn conjectured that the characters of the logarithmic conformal field theory $c_{k, 1}$ admit fermionic representations labelled by the Lie algebra $D_{k}$. In this paper, we provide a simple analytic proof of this conjecture.


PACS number: 11.25.Hf

## 1. Introduction

In the past two decades an almost complete understanding of the analytic and combinatorial structure of fermionic character representations for the minimal unitary models $M\left(p, p^{\prime}\right)$ in conformal field theory has been obtained [3-6, 10-13, 16, 19-22]. In a recent paper, Flohr, Grabow and Koehn (FGK) [9] took the first tentative steps towards extending these results to the realm of logarithmic conformal field theory (LCFT). FGK focused on one of the simplest examples of a LCFT; the $\mathcal{W}(2,2 k-1,2 k-1,2 k-1)$ series of triplet algebras of central charge

$$
c=1-\frac{6(k-1)^{2}}{k}
$$

denoted as the $c_{k, 1}$ models for short. Surprisingly, FGK conjectured that the characters of the $c_{k, 1}$ models may be described in terms of the Lie algebra $D_{k}$. For example, if $B$ denotes the inverse Cartan matrix of $D_{k}$, then, conjecturally,

$$
\begin{equation*}
\chi_{\lambda}(\tau)=q^{\varphi_{\lambda}} \sum_{\substack{n_{1}, \ldots, n_{k}=0 \\ n_{k-1}=n_{k}(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\frac{\lambda}{2}\left(n_{k-1}-n_{k}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}} . \tag{1}
\end{equation*}
$$

[^0]Here $\chi_{\lambda}$ for $\lambda \in\{0,1, \ldots, k\}$ is a $c_{k, 1}$ character, $\varphi_{\lambda}=\lambda^{2} /(4 k)-1 / 24, q=$ $\exp (2 \pi \mathrm{i} \tau),(q ; q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)$ and $a \equiv b(c)$ is shorthand for $a \equiv b$ $(\bmod c)$.

In support of (1) FGK provided a proof for the degenerate case $k=2$ (in which case $B$ is half the $2 \times 2$ identity matrix) and showed that in the $q \rightarrow 1^{-}$limit (1) gives rise to the well-known $D_{k}$ dilogarithm identity

$$
2 L\left(\frac{1}{k}\right)+\sum_{j=2}^{k-1} L\left(\frac{1}{j^{2}}\right)=\frac{\pi^{2}}{6}
$$

where $L(x)$ is the Rogers dilogarithm [15]. (The $D_{k}$ nature of the above identity lies with the fact that $x=\left(1 / 4,1 / 9, \ldots, 1 /(k-1)^{2}, 1 / k, 1 / k\right)$ solves the simultaneous equations $x_{i}=\prod_{j=1}^{k}\left(1-x_{j}\right)^{2 B_{i j}}$ for $1 \leqslant i \leqslant k$.)

In this paper, we provide an analytic proof of (1) and its allied $c_{k, 1}$ character identities. Key is the observation that the matrix $B$ contains the submatrix

$$
T=(\min (i, j))_{1 \leqslant i, j \leqslant k-2}
$$

which itself admits character identities similar to (1). Indeed it is a classical result-first discovered by Andrews [1] in the context of partition theory-that

$$
\begin{equation*}
\chi_{\lambda}^{\mathrm{Vir}}(\tau)=q^{\phi_{\lambda}} \sum_{n_{1}, \ldots, n_{k-2}=0}^{\infty} \frac{q^{\sum_{i, j=1}^{k-2} T_{i j} n_{i} n_{j}+\sum_{i=\lambda}^{k-2}(i-\lambda+1) n_{i}}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-2}}}, \tag{2}
\end{equation*}
$$

where $\chi_{\lambda}^{\text {Vir }}$ for $\lambda \in\{1, \ldots, k-1\}$ are the characters of the Virasoro minimal models $M(2,2 k-1)$ and

$$
\phi_{\lambda}=\frac{(2 \lambda-2 k+1)^{2}}{8(2 k-1)}-\frac{1}{24} .
$$

It is the connection between the conjectural (1) and Andrews' (2) that will play a crucial role in our proof.

## 2. $c_{k, 1}$ character formulae

We will not formally define the characters of the $c_{k, 1}$ models but simply state their bosonic representation as obtained in [8].

Throughout we let $\tau \in \mathbb{C}, \operatorname{Im}(\tau)>0$ and $q \in \mathbb{C}$ be related by $q=\exp (2 \pi \mathrm{i} \tau)$, so that $|q|<1$. This will make all $q$-series considered in this paper absolutely convergent so that we need not concern ourselves with order of summation in multiple series. We also use the standard $q$-notations

$$
(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right) \quad \text { and } \quad(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

and Dedekind's eta-function

$$
\eta(\tau)=q^{1 / 24}(q ; q)_{\infty}
$$

Finally, we need the theta and affine theta functions

$$
\begin{aligned}
& \Theta_{\lambda, k}(\tau)=\sum_{n \in \mathbb{Z}+\frac{\lambda}{2 k}} q^{k n^{2}}, \\
& (\partial \Theta)_{\lambda, k}(\tau)=\sum_{n \in \mathbb{Z}+\frac{\lambda}{2 k}} 2 k n q^{k n^{2}} .
\end{aligned}
$$

With the above notation the following bosonic character formulae corresponding to the $c_{k, 1}$ LCFT hold [8]:

$$
\begin{aligned}
& \chi_{\lambda}(\tau)=\frac{\Theta_{\lambda, k}(\tau)}{\eta(\tau)} \\
& \chi_{\lambda}^{+}(\tau)=\frac{(k-\lambda) \Theta_{\lambda, k}(\tau)+(\partial \Theta)_{\lambda, k}(\tau)}{k \eta(\tau)}=\frac{1}{\eta(\tau)} \sum_{n \in \mathbb{Z}}(2 n+1) q^{k\left(n+\frac{\lambda}{2 k}\right)^{2}} \\
& \chi_{\lambda}^{-}(\tau)=\frac{\lambda \Theta_{\lambda, k}(\tau)-(\partial \Theta)_{\lambda, k}(\tau)}{k \eta(\tau)}=\frac{1}{\eta(\tau)} \sum_{n \in \mathbb{Z}} 2 n q^{k\left(n-\frac{\lambda}{2 k}\right)^{2}}
\end{aligned}
$$

with $\lambda \in\{0,1, \ldots, k\}$ in $\chi_{\lambda}$ and $\lambda \in\{1, \ldots, k-1\}$ in $\chi_{\lambda}^{ \pm}$.
To state the fermionic expressions of FGK we let $B$ be the inverse Cartan matrix of the Lie algebra $D_{k}$ with labelling of the vertices of the Dynkin diagram given by


Hence,

$$
\begin{align*}
& B_{k, k-1}=B_{k-1, k}=\frac{k-2}{4}, \quad B_{k-1, k-1}=B_{k, k}=\frac{k}{4},  \tag{3a}\\
& B_{i, k-1}=B_{i, k}=B_{k-1, i}=B_{k, i}=\frac{i}{2} \quad 1 \leqslant i \leqslant k-2,  \tag{3b}\\
& B_{i j}=\min (i, j) \quad 1 \leqslant i, j, \leqslant k-2 . \tag{3c}
\end{align*}
$$

Then, the conjectures of FGK correspond to

$$
\begin{aligned}
& \chi_{\lambda}(\tau)=q^{\varphi_{\lambda}} \sum_{\substack{n_{1}, \ldots, n_{k}=0 \\
n_{k-1} \equiv n_{k}(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\frac{\lambda}{2}\left(n_{k-1}-n_{k}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}}, \\
& \chi_{\lambda}^{+}(\tau)=q^{\varphi_{\lambda}} \sum_{\substack{n_{1}, \ldots, n_{k}=0 \\
n_{k-1} \equiv n_{k}(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\sum_{i=k-\lambda}^{k-2}(i-k+\lambda+1) n_{i}+\frac{\lambda}{2}\left(n_{k-1}+n_{k}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}}
\end{aligned}
$$

and

$$
\chi_{k-\lambda}^{-}(\tau)=q^{\varphi_{\lambda}} \sum_{\substack{n_{1}, \ldots, n_{k}=0 \\ n_{k-1} \neq \eta_{k}(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\sum_{i=k-\lambda}^{k-2}(i-k+\lambda+1) n_{i}+\frac{\lambda}{2}\left(n_{k-1}+n_{k}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}}
$$

where

$$
\varphi_{\lambda}=\frac{\lambda^{2}}{4 k}-\frac{1}{24}
$$

Note that the last two expressions have identical summand and differ only in the restriction on the parity of $n_{k-1}+n_{k}$.

In addition to the above three conjectures we will also prove that

$$
\chi_{k-\lambda}(\tau)=q^{\varphi_{\lambda}} \sum_{\substack{n_{1}, \ldots, n_{k}=0 \\ n_{k}=1 \\ n_{k} \eta_{k}(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{n} n_{j}+\frac{\lambda}{2}\left(n_{k-1}-n_{k}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}}
$$

so that we have two fermionic representations for every character $\chi_{\lambda}$.

Equating each of the fermionic forms with the corresponding bosonic form we obtain the following two $q$-series identities:

$$
\begin{equation*}
\sum_{\substack{n_{1}, \ldots, n_{k}=0 \\ n_{k-1}+n_{k} \equiv \sigma(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\frac{\lambda}{2}\left(n_{k-1}-n_{k}+\sigma\right)-\frac{1}{4} \sigma k}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}}=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} q^{k n^{2}+(\lambda-\sigma k) n} \tag{4a}
\end{equation*}
$$

for $\lambda \in\{0, \ldots, k\}$ and

$$
\begin{gather*}
\sum_{\substack{n_{1}, \ldots, n_{k}=0 \\
n_{k-1}+n_{k} \equiv \sigma(2)}}^{\infty} \frac{q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}+\sum_{i=k-\lambda}^{k-2}(i-k+\lambda+1) n_{i}+\frac{\lambda}{2}\left(n_{k-1}+n_{k}+\sigma\right)-\frac{1}{4} \sigma k}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k}}} \\
=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n} \tag{4b}
\end{gather*}
$$

for $\lambda \in\{1, \ldots, k-1\}$. In both formulae $\sigma$ is either zero or one.
We remark that by the Jacobi triple product identity [2] the right-hand side of (4a) may also be written in product form as

$$
\frac{\left(-q^{k+\lambda-\sigma k},-q^{k-\lambda+\sigma k}, q^{2 k} ; q^{2 k}\right)_{\infty}}{(q ; q)_{\infty}},
$$

where

$$
(a, q / a, q ; q)_{\infty}=\prod_{i=1}^{\infty}\left(1-a q^{i-1}\right)\left(1-q^{i} / a\right)\left(1-q^{i}\right)
$$

## 3. Proof of (4a) and (4b)

As a first step we rewrite (4a) and (4b) by replacing the summation variables $n_{k-1}$ and $n_{k}$ by $n$ and $m$, respectively. Also eliminating explicit reference to the inverse Cartan matrix $B$ using (3), we get

$$
\begin{align*}
& \sum_{\substack{n, m=0 \\
n+m=\sigma(2)}}^{\infty} \frac{q^{\frac{k}{4}\left(n^{2}+m^{2}-\sigma\right)+\frac{k-2}{2} n m+\frac{\lambda}{2}(n-m+\sigma)}}{(q ; q)_{n}(q ; q)_{m}} \sum_{n_{1}, \ldots, n_{k-2}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-2}^{2}+(n+m)\left(N_{1}+\cdots+N_{k-2}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-2}}} \\
& \quad=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} q^{k n^{2}+(\lambda-\sigma k) n} \tag{5a}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{\substack{n, m=0 \\
n+m \equiv \sigma(2)}}^{\infty} \frac{q^{\frac{k}{4}\left(n^{2}+m^{2}-\sigma\right)+\frac{k-2}{2} n m+\frac{\lambda}{2}(n+m+\sigma)}}{(q ; q)_{n}(q ; q)_{m}} \sum_{n_{1}, \ldots, n_{k-2}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-2}^{2}+N_{k-\lambda}+\cdots+N_{k-2}+(n+m)\left(N_{1}+\cdots+N_{k-2}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-2}}} \\
& \quad=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n}, \tag{5b}
\end{align*}
$$

where $N_{i}=n_{i}+n_{i+1}+\cdots+n_{k-2}$. We note that the quadratic form involving $N_{i}$ may alternatively be expressed in terms of the submatrix $T$ of $B$ given by $T_{i j}=\min (i, j)$ for $1 \leqslant i, j \leqslant k-2$. Specifically,

$$
N_{1}^{2}+\cdots+N_{k-2}^{2}=\sum_{i, j=1}^{k-2} T_{i j} n_{i} n_{j}
$$

Proof of (5a). To prove (5a) we denote its left-hand side by $L_{\lambda, k, \sigma}$. Shifting the summation index $n \rightarrow 2 n-m-\sigma$ and replacing $k \rightarrow k+1$ we obtain
$L_{\lambda, k+1, \sigma}=\sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} \frac{q^{k n^{2}+(n-m)(n-m+\lambda-\sigma)-\sigma k n}}{(q ; q)_{2 n-m-\sigma}(q ; q)_{m}} \sum_{n_{1}, \ldots, n_{k-1}}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+(2 n-\sigma)\left(N_{1}+\cdots+N_{k-1}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-1}}}$,
where now

$$
N_{i}=n_{i}+\cdots+n_{k-1}
$$

and $\lambda \in\{0, \ldots, k+1\}$.
In order the evaluate the multisum on the second line we consider the more general expression

$$
\begin{equation*}
Q_{k, i}(x)=\sum_{n_{1}, \ldots, n_{k-1}=0}^{\infty} \frac{x^{N_{1}+\cdots+N_{k-1}} q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{i}+\cdots+N_{k-1}}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-1}}} \tag{7}
\end{equation*}
$$

for $i \in\{1, \ldots, k\}$. This multisum was first introduced by Andrews [1, equation (2.5)] in his proof of the analytic form of Gordon's partition identities. (In the notation of Andrews' book Partition Theory we have $Q_{k, i}(x)=J_{k, i}(0 ; x ; q)$, see [2, equation (7.3.8)].)

In [1, equation (2.1)] (see also [2, equations (7.2.1) and (7.2.2)]) we find the following single-sum form for $Q_{k, i}$ :

$$
Q_{k, i}(x)=\frac{1}{(x q ; q)_{\infty}} \sum_{j=0}^{\infty}(-1)^{j} x^{k j} q^{\left(\frac{j}{2}\right)+k j^{2}+(k-i+1) j}\left(1-x^{i} q^{i(2 j+1)}\right) \frac{(x q ; q)_{j}}{(q ; q)_{j}}
$$

This in fact shows that $Q_{k, i}$ coincides with functions studied earlier by Rogers [17] and Selberg [18]. From the above we infer that

$$
\begin{align*}
Q_{k, k-\lambda+1}\left(q^{2 n-\sigma}\right) & =\frac{1}{(q ; q)_{\infty}} \sum_{j=0}^{\infty}(-1)^{j} q^{\left(\frac{j}{2}\right)+k j^{2}+(\lambda-\sigma k) j+2 k n j} \\
\times & \left(1-q^{(k-\lambda+1)(2 j+2 n-\sigma+1)}\right) \frac{(q ; q)_{j+2 n-\sigma}}{(q ; q)_{j}} . \tag{8}
\end{align*}
$$

Let us now return to (6. By (7) the multisum on the second line of (6) may be identified as $Q_{k, k}\left(q^{2 n-\sigma}\right)$ and by (8) with $\lambda=1$ this may be simplified to a single sum. Therefore,

$$
\begin{gathered}
L_{\lambda, k+1, \sigma}=\frac{1}{(q ; q)_{\infty}} \sum_{j, n=0}^{\infty} \sum_{m=0}^{2 n-\sigma}(-1)^{j} q^{\binom{j+1}{2}+k(j+n)^{2}+(n-m)(n-m+\lambda-\sigma)-\sigma k(j+n)} \\
\times\left(1-q^{k(2 j+2 n-\sigma+1)}\right) \frac{(q ; q)_{j+2 n-\sigma}}{(q ; q)_{j}(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}
\end{gathered}
$$

Our next step is to shift the summation indices $n \rightarrow n-j$ and $m \rightarrow m-j$, resulting in

$$
\begin{aligned}
L_{\lambda, k+1, \sigma}= & \frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n(n-\sigma)+(n-m)(n-m+\lambda-\sigma)}\left(1-q^{k(2 n-\sigma+1)}\right) \\
& \quad \times \sum_{j=0}^{\min (m, 2 n-m-\sigma)}(-1)^{j} q^{\binom{j+1}{2}} \frac{(q ; q)_{2 n-j-\sigma}}{(q ; q)_{j}(q ; q)_{m-j}(q ; q)_{2 n-m-j-\sigma}} .
\end{aligned}
$$

Employing standard basic hypergeometric notation [14] this may also we written as

$$
\begin{align*}
L_{\lambda, k+1, \sigma}= & \frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n(n-\sigma)+(n-m)(n-m+\lambda-\sigma)}\left(1-q^{k(2 n-\sigma+1)}\right) \\
& \times \frac{(q ; q)_{2 n-\sigma}}{(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}{ }^{2} \phi_{1}\left[\begin{array}{c}
q^{-m}, q^{-(2 n-m-\sigma)} \\
q^{-(2 n-\sigma)}
\end{array} ; q, q\right] \tag{9}
\end{align*}
$$

To proceed we need the $q$-Chu-Vandermonde sum [14, equation (II.6)]

$$
{ }_{2} \phi_{1}\left[\begin{array}{c}
a, q^{-n} ; q, q \\
c
\end{array}\right]=a^{n} \frac{(c / a ; q)_{n}}{(c ; q)_{n}} .
$$

Hence, the ${ }_{2} \phi_{1}$ series may be summed to

$$
\begin{equation*}
\frac{(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}{(q ; q)_{2 n-\sigma}} \tag{10}
\end{equation*}
$$

leading to

$$
L_{\lambda, k+1, \sigma}=\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n(n-\sigma)+(n-m)(n-m+\lambda-\sigma)}\left(1-q^{k(2 n-\sigma+1)}\right)
$$

The remainder of the proof requires only elementary manipulations:

$$
\begin{aligned}
L_{\lambda, k+1, \sigma} & =\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n-\sigma} q^{k n(n-\sigma)+m(m-\lambda+\sigma)}\left(1-q^{k(2 n-\sigma+1)}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{m=-\infty}^{\infty} q^{m(m-\lambda+\sigma)} \sum_{n=\max (-m, m+\sigma)}^{\infty}\left(q^{k n(n-\sigma)}-q^{k(n+1)(n+1-\sigma)}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{m=-\infty}^{\infty} q^{(k+1) m^{2}-(\lambda-\sigma(k+1)) m}
\end{aligned}
$$

Finally, replacing $k \rightarrow k-1$ and changing the summation index $m \rightarrow-n$ completes the proof of (5a).

Proof of (5b). As in the proof of (5a) we denote the left-hand side of (5b) by $L_{\lambda, k, \sigma}$. Again we carry out the shift $n \rightarrow 2 n-m-\sigma$ in the summation index and replace $k \rightarrow k+1$. Thus,

$$
\begin{aligned}
L_{\lambda, k+1, \sigma}=\sum_{n=0}^{\infty} & \sum_{m=0}^{2 n-\sigma} \frac{q^{k n^{2}+(n-m)(n-m-\sigma)+(\lambda-\sigma k) n}}{(q ; q)_{2 n-m-\sigma}(q ; q)_{m}} \\
& \times \sum_{n_{1}, \ldots, n_{k-1}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{k-\lambda+1}+\cdots+N_{k-1}+(2 n-\sigma)\left(N_{1}+\cdots+N_{k-1}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-1}}}
\end{aligned}
$$

From (7) we infer that the second line is $J_{k, k-\lambda+1}\left(q^{2 n-\sigma}\right)$ so that we may invoke (8) to obtain

$$
\begin{aligned}
L_{\lambda, k+1, \sigma}= & \frac{1}{(q ; q)_{\infty}} \sum_{j, n=0}^{\infty} \sum_{m=0}^{2 n-\sigma}(-1)^{j} q^{\left(\frac{j}{2}\right)+k(j+n)^{2}+(\lambda-\sigma k)(j+n)+(n-m)(n-m-\sigma)} \\
& \times\left(1-q^{(k-\lambda+1)(2 j+2 n-\sigma+1)}\right) \frac{(q ; q)_{j+2 n-\sigma}}{(q ; q)_{j}(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}
\end{aligned}
$$

Following the earlier proof we shift $n \rightarrow n-j$ and $m \rightarrow m-j$, and use basic hypergeometric notation to find

$$
\begin{gathered}
L_{\lambda, k+1, \sigma}=\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n^{2}+(\lambda-\sigma k) n+(n-m)(n-m-\sigma)}\left(1-q^{(k-\lambda+1)(2 n-\sigma+1)}\right) \\
\quad \times \frac{(q ; q)_{2 n-\sigma}}{(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}{ }_{2} \phi_{1}\left[\begin{array}{c}
q^{-m}, q^{-(2 n-m-\sigma)} \\
q^{-(2 n-\sigma)}
\end{array} ; q, 1\right] .
\end{gathered}
$$

This time we need the second form of the $q$-Chu-Vandermonde sum [14, equation (II.7)]

$$
{ }_{2} \phi_{1}\left[\begin{array}{c}
a, q^{-n}  \tag{11}\\
c
\end{array} ; q, \frac{c q^{n}}{a}\right]=\frac{(c / a ; q)_{n}}{(c ; q)_{n}}
$$

to sum the ${ }_{2} \phi_{1}$ series to

$$
q^{(2 n-\sigma) m-m^{2}} \frac{(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}{(q ; q)_{2 n-\sigma}}
$$

Hence,

$$
\begin{align*}
L_{\lambda, k, \sigma} & =\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n^{2}+(\lambda-\sigma k) n}\left(1-q^{(k-\lambda)(2 n-\sigma+1)}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n}\left(1-q^{(k-\lambda)(2 n+1)}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n} \tag{12}
\end{align*}
$$

establishing (5b).

## 4. Discussion

The $c_{k, 1}$ character identities proved in this paper admit polynomial analogues. Defining the $q$-binomial coefficient as

$$
\left[\begin{array}{c}
n+m  \tag{13}\\
n
\end{array}\right]=\frac{(q ; q)_{n+m}}{(q ; q)_{n}(q ; q)_{m}}
$$

for $n, m$ nonnegative integers, and assuming $k \geqslant 3$, we for example have

$$
\sum_{\substack{n_{1}, \ldots, n_{k}=0  \tag{14}\\
n_{k-1} \equiv n_{k}(2)}}^{\infty} z^{\frac{1}{2}\left(n_{k-1}-n_{k}\right)} q^{\sum_{i, j=1}^{k} B_{i j} n_{i} n_{j}} \prod_{i=1}^{k}\left[\begin{array}{c}
n_{i}+m_{i} \\
n_{i}
\end{array}\right]=\sum_{n=-\infty}^{\infty} z^{n} q^{k n^{2}}\left[\begin{array}{c}
2 L \\
L-k n
\end{array}\right] .
$$

Here, the $m_{i}$ appearing in the $q$-binomial coefficients are fixed by

$$
m_{i}=\sum_{j=1}^{k} B_{i j}\left(2 L \delta_{j, 1}-2 n_{j}\right)
$$

When $L$ tends to infinity and $z$ is specialized to $q^{\lambda}$ the identity (14) simplifies to (4a) with $\sigma=0$. It is interesting to note that for $q=1$ it provides an identity for the number of walks of length $2 L$ on the rooted cyclic graph $C_{2 k}$ beginning and terminating at the root. Here, the parameter $z$ in the generating function serves to keep track of the number of cycles of the rooted walks on $C_{2 k}$.

The previous method of proof fails to also deal with (14) but, as will be shown in appendix A , (14) may be proved by induction on $k$.

Finally, we remark that if we replace $q \rightarrow 1 / q$ in (14) and then let $L$ tend to infinity we obtain the dual identity

$$
\begin{aligned}
\sum_{\substack{m_{1}, \ldots, m_{k}=0 \\
m_{1} \ldots, m_{k-2}=0(2) \\
m_{k-1}=m_{k}(2)}}^{\infty} & \frac{z^{\frac{1}{2}\left(m_{k-1}-m_{k}\right)} q^{\frac{1}{4} \sum_{i, j=1}^{k} c_{i j} m_{i} m_{j}}}{(q ; q)_{m_{1}}} \prod_{i=2}^{k}\left[\begin{array}{c}
n_{i}+m_{i} \\
m_{i}
\end{array}\right] \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} z^{n} q^{k(k-1) n^{2}} \\
= & \frac{\left(-z q^{k(k-1)},-q^{k(k-1)} / z, q^{2 k(k-1)} ; q^{2 k(k-1)}\right)_{\infty}}{(q ; q)_{\infty}},
\end{aligned}
$$

where $C=B^{-1}$ is the $D_{k}$ Cartan matrix and

$$
n_{i}=-\frac{1}{2} \sum_{j=1}^{k} C_{i j} m_{j}
$$

## 5. Postscript

Shortly after completing this paper B Feigin, E Feigin and Tipunin proved another family of character formulae for the $c_{k, 1}$ models [7]. Replacing $p \rightarrow k$ and $s \rightarrow k-\lambda$ and $\left(n_{+}, n_{-}\right) \rightarrow(n, m)$ in [7, theorem 1.1] the result of Feigin et al reads

$$
\begin{align*}
\chi_{\lambda}^{+}(q)+\chi_{k-\lambda}^{-}(q) & =q^{\varphi_{\lambda}} \sum_{n, m=0}^{\infty} \frac{q^{\frac{k}{4}(n+m)^{2}+\frac{\lambda}{2}(n+m)}}{(q ; q)_{n}(q ; q)_{m}} \\
& \times \sum_{n_{1}, \ldots, n_{k-1}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{k-\lambda}+\cdots+N_{k-1}+(n+m)\left(N_{1}+\cdots+N_{k-1}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-1}}}, \tag{15}
\end{align*}
$$

where

$$
N_{i}=n_{1}+\cdots+n_{k-1} .
$$

When the sum over $n$ and $m$ is restricted to even (odd) values of $n+m$ we obtain $\chi_{\lambda}^{+}(q)$ $\left(\chi_{k-\lambda}^{-}(q)\right)$, and in appendix B the method used in section 3 to prove the FGK conjectures is employed to establish that

$$
\begin{align*}
& \sum_{\substack{n, m=0 \\
n+m \equiv \sigma(2)}}^{\infty} \frac{q^{\left.\frac{k}{4}\left((n+m)^{2}-\sigma\right)\right)+\frac{\lambda}{2}(n+m+\sigma)}}{(q ; q)_{n}(q ; q)_{m}} \sum_{n_{1}, \ldots, n_{k-1}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{k-\lambda}+\cdots+N_{k-1}+(n+m)\left(N_{1}+\cdots+N_{k-1}\right)}}{(q ; q)_{n_{1}} \cdots(q ; q)_{n_{k-1}}} \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n} \tag{16}
\end{align*}
$$

This is to be compared with (5b). Summing the above over $\sigma \in\{0,1\}$ yields (15).

## Acknowledgments

I wish to thank Omar Foda for helpful discussions and for pointing out the conjectures of [9].

## Appendix A

In this appendix we prove (14). To begin we replace $n_{k} \rightarrow 2 n+n_{k-1}$ on the left and $n \rightarrow-n$ on the right. Then equating coefficients of $z^{-n}$ and finally replacing $k \rightarrow k+1$ yields

$$
\begin{gathered}
\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} q^{\sum_{i=1}^{k} N_{i}\left(N_{i}+2 n\right)}\left[\begin{array}{c}
L-(k-1) n-\sum_{i=1}^{k-1} N_{i} \\
n_{k}+2 n
\end{array}\right]\left[\begin{array}{c}
L-(k-1) n-\sum_{i=1}^{k-1} N_{i} \\
n_{k}
\end{array}\right] \\
\times \prod_{i=1}^{k-1}\left[\begin{array}{c}
2 L-2 i n+n_{i}-2 \sum_{j=1}^{i} N_{j} \\
n_{i}
\end{array}\right]=\left[\begin{array}{c}
2 L \\
L-(k+1) n
\end{array}\right]
\end{gathered}
$$

where

$$
N_{i}=n_{1}+\cdots+n_{k} .
$$

Note that we may without loss of generality assume from now on that $n$ is a nonnegative integer. Indeed, by the shift $n_{k} \rightarrow n_{k}-2 n$ we obtain the same identity but with $n$ replaced by $-n$.

Next we use the symmetry in $n$ and $m$ of the $q$-binomial coefficient (13) to rewrite the above multisum as

$$
\begin{gather*}
\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} q^{\sum_{i=1}^{k} N_{i}\left(N_{i}+2 n\right)}\left[\begin{array}{c}
L-(k-1) n-\sum_{i=1}^{k-1} N_{i} \\
L-(k+1) n-\sum_{i=1}^{k} N_{i}
\end{array}\right]\left[\begin{array}{c}
L-(k-1) n-\sum_{i=1}^{k-1} N_{i} \\
n_{k}
\end{array}\right] \\
\times \prod_{i=1}^{k-1}\left[\begin{array}{c}
2 L-2 i n+n_{i}-2 \sum_{j=1}^{i} N_{j} \\
n_{i}
\end{array}\right]=\left[\begin{array}{c}
2 L \\
L-(k+1) n
\end{array}\right] . \tag{A.1}
\end{gather*}
$$

At first sight this may not appear at all significant, but a close inspection reveals that we may now replace (13) by

$$
\left[\begin{array}{c}
n+m  \tag{A.2}\\
n
\end{array}\right]= \begin{cases}\frac{\left(q^{m+1} ; q\right)_{n}}{(q ; q)_{n}} & \text { for } \quad n \geqslant 0 \\
0 & \text { for } \quad n<0\end{cases}
$$

The difference with the earlier definition is that the above $q$-binomial coefficient is non-zero when $n+m<0$ and $n \geqslant 0$. Clearly, if we can show that negative upper entries cannot occur in the $q$-binomial coefficients of (A.1), then the change of definition is justified. To achieve this we note that both $q$-binomial definitions imply that the summand of (A.1) vanishes unless $n_{1}, \ldots, n_{k} \geqslant 0$ and

$$
\sum_{j=1}^{k} N_{j} \leqslant L-(k+1) n
$$

But this implies that

$$
L-(k-1) n-\sum_{i=1}^{k-1} N_{i} \geqslant 2 n \geqslant 0
$$

and

$$
2 L-2 i n+n_{i}-2 \sum_{j=1}^{i} N_{j} \geqslant 2(k-i+1) n+n_{i} \geqslant 0
$$

as required.
We now proceed by proving the identity

$$
\begin{gather*}
\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} q^{\sum_{i=1}^{k} N_{i}\left(N_{i}+m\right)}\left[\begin{array}{c}
L_{1}+m-\sum_{i=1}^{k-1} N_{i} \\
L_{1}-\sum_{i=1}^{k} N_{i}
\end{array}\right]\left[\begin{array}{c}
L_{2}-k m-\sum_{i=1}^{k-1} N_{i} \\
n_{k}
\end{array}\right] \\
\times \prod_{i=1}^{k-1}\left[\begin{array}{c}
L_{1}+L_{2}-i m+n_{i}-2 \sum_{j=1}^{i} N_{j} \\
n_{i}
\end{array}\right]=\left[\begin{array}{c}
L_{1}+L_{2} \\
L_{1}
\end{array}\right], \tag{A.3}
\end{gather*}
$$

where $L_{1}, L_{2}, m$ are arbitrary integers. (For $L_{1}<0$ both sides trivially vanish since the sum over $n_{i}$ is bounded by $\sum_{i} N_{i} \leqslant L_{1}$.) The identity (A.1) is recovered by taking

$$
\left(L_{1}, L_{2}, m\right) \rightarrow(L-(k+1) n, L+(k+1) n, 2 n) .
$$

Before we continue let us remark that, generally, (A.3) is not true if one assumes definition (13) of the $q$-binomial coefficient.

Key to our proof of (A.3) are the polynomial form of the $q$-Pfaff-Saalschütz sum [2, equation (3.3.11)]

$$
\sum_{n=0}^{\min (b, d)} q^{n(n+a-b)}\left[\begin{array}{c}
a  \tag{A.4}\\
b-n
\end{array}\right]\left[\begin{array}{l}
c \\
n
\end{array}\right]\left[\begin{array}{c}
a+c+d-n \\
d-n
\end{array}\right]=\left[\begin{array}{c}
a+d \\
b
\end{array}\right]\left[\begin{array}{c}
a-b+c+d \\
d
\end{array}\right]
$$

and its $d \rightarrow \infty$ limit (which corresponds to a polynomial analogue of the $q$-Chu-Vandermonde sum (11)

$$
\sum_{n=0}^{b} q^{n(n+a-b)}\left[\begin{array}{c}
a  \tag{A.5}\\
b-n
\end{array}\right]\left[\begin{array}{l}
c \\
n
\end{array}\right]=\left[\begin{array}{c}
a+c \\
b
\end{array}\right]
$$

Thanks to (A.2) the above two summations are true for all integers $a, b, c, d$.
We now eliminate the variables $n_{i}$ by $n_{i}=N_{i}-N_{i+1}$ (with $N_{k+1}=0$ ) from (A.3) to obtain the equivalent formula

$$
\begin{align*}
\sum_{N_{1} \geqslant \cdots \geqslant N_{k} \geqslant 0} q^{\sum_{i=1}^{k} N_{i}\left(N_{i}+m\right)}\left[\begin{array}{c}
L_{1}+m-\sum_{i=1}^{k-1} N_{i} \\
L_{1}-\sum_{i=1}^{k} N_{i}
\end{array}\right]\left[\begin{array}{c}
L_{2}-k m-\sum_{i=1}^{k-1} N_{i} \\
N_{k}
\end{array}\right] \\
\times \prod_{i=1}^{k-1}\left[\begin{array}{c}
L_{1}+L_{2}-i m+N_{i}-N_{i+1}-2 \sum_{j=1}^{i} N_{j} \\
N_{i}-N_{i+1}
\end{array}\right]=\left[\begin{array}{c}
L_{1}+L_{2} \\
L_{1}
\end{array}\right] . \tag{A.6}
\end{align*}
$$

For $k=1$ this is

$$
\sum_{N_{1}=0}^{L_{1}} q^{N_{1}\left(N_{1}+m\right)}\left[\begin{array}{c}
L_{1}+m \\
L_{1}-N_{1}
\end{array}\right]\left[\begin{array}{c}
L_{2}-m \\
N_{1}
\end{array}\right]=\left[\begin{array}{c}
L_{1}+L_{2} \\
L_{1}
\end{array}\right]
$$

which follows from (A.5). Now assume that $k \geqslant 2$ and write the left-hand side of (A.6) as $f_{k}$. Then,

$$
\begin{gathered}
f_{k}=\sum_{N_{1} \geqslant \ldots \geqslant N_{k-1} \geqslant 0} q^{\sum_{i=1}^{k-1} N_{i}\left(N_{i}+m\right)} \prod_{i=1}^{k-2}\left[\begin{array}{c}
L_{1}+L_{2}-i m+N_{i}-N_{i+1}-2 \sum_{j=1}^{i} N_{j} \\
N_{i}-N_{i+1}
\end{array}\right] \\
\times \sum_{N_{k} \geqslant 0} q^{N_{k}\left(N_{k}+m\right)}\left[\begin{array}{c}
L_{1}+m-\sum_{i=1}^{k-1} N_{i} \\
L_{1}-\sum_{i=1}^{k} N_{i}
\end{array}\right]\left[\begin{array}{c}
L_{2}-k m-\sum_{i=1}^{k-1} N_{i} \\
N_{k}
\end{array}\right] \\
\times\left[\begin{array}{c}
L_{1}+L_{2}-(k-1) m+N_{k-1}-N_{k}-2 \sum_{j=1}^{k-1} N_{j} \\
N_{k-1}-N_{k}
\end{array}\right] .
\end{gathered}
$$

The sum over $N_{k}$ may be performed by (A.4), resulting in

$$
f_{k}=f_{k-1}
$$

A standard induction argument completes the proof.

## Appendix B

In this appendix we prove (16). First we shift $n \rightarrow 2 n-m-\sigma$ to find

$$
\operatorname{LHS}(16)=\sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} \frac{q^{k n^{2}+(\lambda-\sigma k) n}}{(q ; q)_{2 n-m-\sigma}(q ; q)_{m}} Q_{k, k-\lambda}\left(q^{2 n-\sigma}\right),
$$

with $Q_{k, i}(x)$ defined in (7). By (8) with $\lambda \rightarrow \lambda+1$ this becomes

$$
\begin{aligned}
\operatorname{LHS}(16)= & \frac{1}{(q ; q)_{\infty}} \sum_{j, n=0}^{\infty} \sum_{m=0}^{2 n-\sigma}(-1)^{j} q^{\binom{j+1}{2}+k(j+n)^{2}+(\lambda-\sigma k)(j+n)} \\
& \times\left(1-q^{(k-\lambda)(2 j+2 n-\sigma+1)}\right) \frac{(q ; q)_{j+2 n-\sigma}}{(q ; q)_{j}(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}
\end{aligned}
$$

After the shifts $n \rightarrow n-j$ and $m \rightarrow m-j$ this is

$$
\begin{aligned}
\operatorname{LHS}(16)= & \frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n^{2}+(\lambda-\sigma k) n}\left(1-q^{(k-\lambda)(2 n-\sigma+1)}\right) \\
& \times \frac{(q ; q)_{2 n-\sigma}}{(q ; q)_{m}(q ; q)_{2 n-m-\sigma}}{ }_{2} \phi_{1}\left[\begin{array}{c}
q^{-m}, q^{-(2 n-m-\sigma)} \\
q^{-(2 n-\sigma)} ; q, q
\end{array}\right] \\
= & \frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{m=0}^{2 n-\sigma} q^{k n^{2}+(\lambda-\sigma k) n}\left(1-q^{(k-\lambda)(2 n-\sigma+1)}\right) \\
= & \frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(2 n-\sigma+1) q^{k n^{2}+(\lambda-\sigma k) n}
\end{aligned}
$$

Here, the second equality follows by noting that the same ${ }_{2} \phi_{1}$ sum occurs in (9) so that it equates to (10). The last equality follows from (12).

## References

[1] Andrews G E 1974 An analytic generalization of the Rogers-Ramanujan identities for odd moduli Proc. Natl Acad. Sci. USA 71 4082-5
[2] Andrews G E 1976 The Theory of Partitions (Encyclopedia of Mathematics and its Applications vol 2) (Reading, MA: Addison-Wesley)
[3] Berkovich A 1994 Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series $M(v, v+1)$. Exact results Nucl. Phys. B 431 315-48
[4] Berkovich A and McCoy B M 1996 Continued fractions and fermionic representations for characters of $M\left(p, p^{\prime}\right)$ minimal models Lett. Math. Phys. 37 49-66
[5] Berkovich A, McCoy B M and Schilling A 1998 Rogers-Schur-Ramanujan type identities for the $M\left(p, p^{\prime}\right)$ minimal models of conformal field theory Commun. Math. Phys. 191 325-95
[6] Dasmahapatra S, Kedem R, Klassen T R, McCoy B M and Melzer E 1993 Quasi-particles, conformal field theory, and $q$-series Int. J. Mod. Phys. B 7 3617-48
[7] Feigin B, Feigin E and Tipunin I 2007 Fermionic formulas for ( $1, p$ ) logarithmic model characters in $\Phi_{2,1}$ quasiparticle realisation Preprint hep-th/0704.2464
[8] Flohr M A I 1996 On modular invariant partition functions of conformal field theories with logarithmic operators Int. J. Mod. Phys. A 11 4147-72
[9] Flohr M, Grabow C and Koehn M 2007 Fermionic expressions for the characters of $c_{p, 1}$ logarithmic conformal field theories Nucl. Phys. B 768 263-76
[10] Foda O and Quano Y-H 1995 Polynomial identities of the Rogers-Ramanujan type Int. J. Mod. Phys. A 10 2291-315
[11] Foda O and Quano Y-H 1996 Virasoro character identities from the Andrews-Bailey construction Int. J. Mod. Phys. A 12 1651-75
[12] Foda O, Lee K S M and Welsh T A 1998 A Burge tree of Virasoro-type polynomial identities Int. J. Mod. Phys. A 13 4967-5012
[13] Foda O, Lee K S M, Pugai Y and Welsh T A 2000 Path generating transforms $q$-Series from a Contemporary Perspective (Contemp. Math. vol 254) ed M E H Ismail and D W Stanton (Providence, RI: American Mathematical Society) pp 157-86
[14] Gasper G and Rahman M 2004 Basic Hypergeometric Series (Encyclopedia of Mathematics and its Applications vol 35) 2nd edn (Cambridge: Cambridge University Press)
[15] Lewin L 1958 Dilogarithms and Associated Functions (London: Macdonald)
[16] Melzer E 1994 Fermionic character sums and the corner transfer matrix Int. J. Mod. Phys. A 9 1115-36
[17] Rogers L J 1917 On two theorems of combinatory analysis and some allied identities Proc. London Math. Soc. (2) 16 315-36
[18] Selberg A 1936 Über einige arithmetische Identitäten Avhl. Norske Vid. 8 1-23
[19] Warnaar S O 1996 Fermionic solution of the Andrews-Baxter-Forrester model: I. Unification of CTM and TBA methods J. Stat. Phys. 82 657-85
[20] Warnaar S O 1996 Fermionic solution of the Andrews-Baxter-Forrester model: II. Proof of Melzer's polynomial identities J. Stat. Phys. 84 49-83
[21] Warnaar S O 1997 The Andrews-Gordon identities and $q$-multinomial coefficients Commun. Math. Phys. 184 203-32
[22] Welsh T A 2005 Fermionic expressions for minimal model Virasoro characters Mem. Am. Math. Soc. 175 viii+160


[^0]:    * This work is supported by the Australian Research Council.

